Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.732
Filtrar
1.
Biosystems ; 238: 105194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513884

RESUMO

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.


Assuntos
Laccaria , Micorrizas , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Papaína/metabolismo , Pepsina A/metabolismo , Ácido Aspártico/metabolismo , Cisteína/metabolismo , Simulação de Acoplamento Molecular , Simbiose , Inibidores de Proteases/metabolismo
2.
Sci Rep ; 14(1): 3093, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326523

RESUMO

In this study, we have examined the feasibility of using elemental sulfur content of soybean seeds as a proxy for the overall sulfur amino acid content of soybean seeds. Earlier, we have identified by high throughput ionomic phenotyping several high and low sulfur containing soybean lines from the USDA Soybean Germplasm Collection. Here, we measured the cysteine and methionine content of select soybean lines by high-performance liquid chromatography. Our results demonstrate that those soybean lines which had high elemental sulfur content also had a higher cysteine and methionine content when compared to soybean lines with low elemental sulfur. SDS-PAGE and immunoblot analysis revealed that the accumulation of Bowman Birk protease inhibitor and lunasin in soybean seeds may only be marginally correlated with the elemental sulfur levels. However, we found a positive correlation between the levels of trypsin and chymotrypsin inhibitor activities and elemental sulfur and sulfur amino acid content of the seeds. Thus, elemental sulfur content and/or protease inhibitor activity measurement can be utilized as a rapid and cost-effective method to predict the overall sulfur amino acid content of soybean seeds. Our findings will benefit breeders in their endeavors to develop soybean cultivars with enhanced sulfur amino acid content.


Assuntos
Aminoácidos Sulfúricos , Inibidor da Tripsina de Soja de Bowman-Birk , Soja , Cisteína/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/química , Análise Custo-Benefício , Aminoácidos Sulfúricos/metabolismo , Metionina/metabolismo , Sementes/metabolismo , Inibidores de Proteases/metabolismo
3.
J Mol Med (Berl) ; 102(4): 521-536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381158

RESUMO

Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix. Here, we assess the potential of protease inhibitors (PI) derived from potatoes in inhibiting viral infection and reducing tissue damage. The original full spectrum of potato PI was developed into five fractions by means of chromatography and hydrolysis. Individual fractions showed varying inhibitory efficacy towards a panel of proteases including trypsin, chymotrypsin, ACE2, elastase, and cathepsins B and L. The fractions did not interfere with SARS-CoV-2 infection of Vero E6 cells in vitro. Importantly, two of the fractions fully inhibited elastin-degrading activity of complete primary human neutrophil degranulate. These data warrant further development of potato PI fractions for biomedical purposes, including tissue damage crucial to SARS-CoV-2 pathogenesis. KEY MESSAGES: Protease inhibitor fractions from potato differentially inhibit a series of human proteases involved in viral replication and in tissue damage by overshoot inflammation. Protease inhibition of cell surface receptors such as ACE2 does not prevent virus infection of Vero cells in vitro. Protease inhibitors derived from potato can fully inhibit elastin-degrading primary human neutrophil proteases. Protease inhibitor fractions can be produced at high scale (hundreds of thousands of kilograms, i.e., tons) allowing economically feasible application in lower and higher income countries.


Assuntos
COVID-19 , Solanum tuberosum , Animais , Chlorocebus aethiops , Humanos , Solanum tuberosum/metabolismo , Peptídeo Hidrolases , Células Vero , Enzima de Conversão de Angiotensina 2 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Inibidores Enzimáticos , Inflamação , Antivirais , Elastina/metabolismo
4.
ACS Synth Biol ; 13(2): 509-520, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38316139

RESUMO

The COVID-19 endemic remains a global concern. The search for effective antiviral candidates is still needed to reduce disease risk. However, the availability of high biosafety level laboratory facilities for drug screening is limited in number. To address this issue, a screening system that could be utilized at lower biosafety levels remains essential. This study aimed to develop a novel SARS-CoV-2 main protease (Mpro) dimer-based screening system (DBSS) utilizing synthetic biology in Escherichia coli BL21(DE3). We linked the SARS-CoV-2 Mpro with the DNA-binding domain of AraC regulatory protein, which regulates the reporter gene expression. Protein modeling and molecular docking showed that saquinavir could bind to AraC-Mpro both in its monomer and dimer forms. The constructed DBSS assay indicated the screening system could detect saquinavir inhibitory activity at a concentration range of 4-10 µg/mL compared to the untreated control (P ≤ 0.05). The Vero E6 cell assay validated the DBSS result that saquinavir at 4-10 µg/mL exhibited antiviral activity against SARS-CoV-2. Our DBSS could be used for preliminary screening of numerous drug candidates that possess a dimerization inhibitor activity of SARS-CoV-2 Mpro and also minimize the use of a high biosafety level laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Saquinavir/farmacologia , Simulação de Acoplamento Molecular , Dimerização , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Biologia Sintética , Simulação de Dinâmica Molecular
5.
ACS Chem Biol ; 19(2): 563-574, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232960

RESUMO

The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.


Assuntos
Descoberta de Drogas , SARS-CoV-2 , Descoberta de Drogas/métodos , SARS-CoV-2/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular
6.
Chem Biol Drug Des ; 103(1): e14425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082476

RESUMO

The pneumonia outbreak caused by Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infection poses a serious threat to people worldwide. Although vaccines have been developed, antiviral drugs are still needed to combat SARS-CoV-2 infection due to the high mutability of the virus. SARS-CoV-2 main protein (Mpro ) is a special cysteine protease that is a key enzyme for SARS-CoV-2 replication. It is encoded by peptides and is responsible for processing peptides into functional proteins, making it an important drug target. The paper reviews the structure and peptide-like inhibitors of SARS-CoV-2 Mpro , also the binding mode and structure-activity relationship between the inhibitors and Mpro are introduced in detail. It is hoped that this review can provide ideas and help for the development of anti-coronavirus drugs such as COVID-19, and help to develop broad-spectrum antiviral drug for the treatment of coronavirus diseases as soon as possible.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Peptídeos/farmacologia , Inibidores de Proteases/metabolismo , Simulação de Acoplamento Molecular
7.
ACS Chem Biol ; 19(1): 22-36, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38150587

RESUMO

The papain-like protease of SARS-COV-2 is essential for viral replication and pathogenesis. Its location within a much larger multifunctional protein, NSP3, makes it an ideal candidate for a targeted degradation approach capable of eliminating multiple functions with a single-molecule treatment. In this work, we have developed a HiBiT-based cellular model to study NSP3 degradation and used this platform for the discovery of monovalent NSP3 degraders. We present previously unreported degradation activity of published papain-like protease inhibitors. Follow-up exploration of structure-activity relationships and mechanism-of-action studies points to the recruitment of the ubiquitin-proteasome machinery that is solely driven by site occupancy, regardless of molecular features of the ligand. Supported by HDX data, we hypothesize that binding-induced structural changes in NSP3 trigger the recruitment of an E3 ligase and lead to proteasomal degradation.


Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Papaína , Humanos , Papaína/metabolismo , Proteínas não Estruturais Virais/metabolismo , SARS-CoV-2/química , Inibidores de Proteases/metabolismo
8.
Exp Biol Med (Maywood) ; 248(21): 1927-1936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37997891

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions of people becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. It is essential to further explore and design effective COVID-19 treatment drugs that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. In this study, machine learning was applied for predicting the SARS-CoV-2 main protease binding of Food and Drug Administration (FDA)-approved drugs to assist in the identification of potential repurposing candidates for COVID-19 treatment. Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and compounds experimentally tested in SARS-CoV-2 main protease binding assays in the literature were curated. These chemicals were divided into training (516 chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main protease binders as potential candidates for repurposing to treat COVID-19, 1188 FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A random forest algorithm was used for constructing predictive models based on molecular descriptors calculated using Mold2 software. Model performance was evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% balanced accuracy. The random forest model that was constructed from the whole training dataset was used to predict SARS-CoV-2 main protease binding on the testing set and the FDA-approved drugs. Model applicability domain and prediction confidence on drugs predicted as the main protease binders discovered 10 FDA-approved drugs as potential candidates for repurposing to treat COVID-19. Our results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development targeting SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamento de Medicamentos/métodos , Algoritmo Florestas Aleatórias , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo
9.
J Stroke Cerebrovasc Dis ; 32(12): 107403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804782

RESUMO

OBJECTIVES: Protein Z (PZ) /Protein Z-dependent protease inhibitor (ZPI) (PZ/ZPI) system is a new anticoagulant system discovered in recent years, which plays an important role in many diseases. We aimed to compare the plasma PZ/ZPI levels of acute ischemic stroke (AIS) patients and non-stroke control participants and the role of PZ/ZPI in the development of stroke was preliminarily analyzed. MATERIALS AND METHODS: Enzyme linked immunosorbent assay (ELISA) was used to detect and compare plasma PZ levels of 86 patients with acute AIS and 85 non-stroke control patients. Multivariable Logistic regression was used to analyze whether PZ was an independent risk factor for AIS. RESULTS: In the present study, plasma PZ is closely related to inflammatory response, coagulation process and platelet activation, and may participate in the development of AIS by inducing inflammatory responses and interfering with the coagulation process. CONCLUSIONS: Our results suggested that plasma PZ level is one of the independent risk factors of AIS, and plasma ZPI was closely related to coagulation and platelet parameter and may play a role in the coagulation process during AIS.


Assuntos
AVC Isquêmico , Serpinas , Humanos , Inibidores de Proteases/metabolismo , Serpinas/metabolismo , Serpinas/farmacologia , AVC Isquêmico/diagnóstico , Estudos Prospectivos , Proteínas Sanguíneas/metabolismo
10.
Nat Immunol ; 24(10): 1654-1670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667051

RESUMO

Glioblastoma (GBM) tumors consist of multiple cell populations, including self-renewing glioblastoma stem cells (GSCs) and immunosuppressive microglia. Here we identified Kunitz-type protease inhibitor TFPI2 as a critical factor connecting these cell populations and their associated GBM hallmarks of stemness and immunosuppression. TFPI2 promotes GSC self-renewal and tumor growth via activation of the c-Jun N-terminal kinase-signal transducer and activator of transcription (STAT)3 pathway. Secreted TFPI2 interacts with its functional receptor CD51 on microglia to trigger the infiltration and immunosuppressive polarization of microglia through activation of STAT6 signaling. Inhibition of the TFPI2-CD51-STAT6 signaling axis activates T cells and synergizes with anti-PD1 therapy in GBM mouse models. In human GBM, TFPI2 correlates positively with stemness, microglia abundance, immunosuppression and poor prognosis. Our study identifies a function for TFPI2 and supports therapeutic targeting of TFPI2 as an effective strategy for GBM.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/metabolismo , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Microambiente Tumoral , Transdução de Sinais , Proteínas de Transporte/metabolismo , Imunossupressores/farmacologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
11.
Toxicol In Vitro ; 93: 105689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660998

RESUMO

Bilirubin is excreted into the bile from hepatocytes, mainly as monoglucuronosyl and bisglucuronosyl conjugates, reflecting bilirubin glucuronidation activity. However, there is limited information on the in vitro evaluation of liver cell lines or primary hepatocytes. This study aimed to investigate variations in the bilirubin metabolic function of canine and human hepatocyte spheroids formed in a three-dimensional (3D) culture system indicated by the formation of bilirubin glucuronides when protease inhibitors such as atazanavir, indinavir, ritonavir, and nelfinavir were treated with bilirubin. The culture supernatant was collected for bilirubin glucuronidation assessment and the cells were used to evaluate viability. On day 8 of culture, both canine and human hepatocyte spheroids showed high albumin secretion and distinct spheroid formation, and their bilirubin glucuronidation activities were evaluated considering cell viability. Treatment with atazanavir and ritonavir remarkably inhibited bilirubin glucuronide formation, wherein atazanavir showed the highest inhibition, particularly in human hepatocyte spheroids. These results may reflect the effects on cellular uptake of bilirubin and its intracellular metabolic function. Thus, primary hepatocytes cultured in a 3D culture system may be a useful in vitro system for the comprehensive evaluation of bilirubin metabolic function and risk assessment in bilirubin metabolic disorders for drug development.


Assuntos
Hepatócitos , Inibidores de Proteases , Humanos , Animais , Cães , Sulfato de Atazanavir/metabolismo , Sulfato de Atazanavir/farmacologia , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Bilirrubina/metabolismo , Bilirrubina/farmacologia , Fígado/metabolismo , Ritonavir/farmacologia , Ritonavir/metabolismo , Esferoides Celulares/metabolismo
12.
Biochemistry (Mosc) ; 88(9): 1356-1367, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770402

RESUMO

Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.


Assuntos
Anti-Infecciosos , Photorhabdus , Animais , Photorhabdus/genética , Photorhabdus/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Insetos , Antivirais/metabolismo
13.
Transgenic Res ; 32(5): 351-381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573273

RESUMO

Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.


Assuntos
Bacillus thuringiensis , Quitinases , Inseticidas , Animais , Humanos , Insetos/genética , Inseticidas/metabolismo , Transgenes , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Lectinas/genética , Quitinases/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Controle Biológico de Vetores
14.
Plant Physiol Biochem ; 202: 107915, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536218

RESUMO

Kunitz-like protease inhibitors (KTIs) have been identified to play critical roles in insect defense, but evidence for their involvement in drought stress is sparse. The aim of this study was to identify and functionally characterize a Kunitz-like protease inhibitor, GsKTI, from the wild soybean (Glycine soja) variety ED059. Expression patterns suggest that drought stress and insect herbivory may induce GsKTI transcript levels. Transgenic Arabidopsis lines overexpressing GsKTI have been shown to exhibit enhanced drought tolerance by regulating the ABA signaling pathway and increasing xylem cell number. Transgenic Arabidopsis leaves overexpressing GsKTI interfered with insect digestion and thus had a negative effect on the growth of Helicoverpa armigera. It is concluded that GsKTI increases resistance to drought stress and insect attack in transgenic Arabidopsis lines.


Assuntos
Arabidopsis , Fabaceae , Mariposas , Animais , Arabidopsis/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Secas , Proteínas de Plantas/genética , Fabaceae/metabolismo , Mariposas/metabolismo , Glicina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
15.
Curr Opin Struct Biol ; 82: 102667, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544112

RESUMO

Since its outbreak in late 2019, the COVID-19 pandemic has drawn enormous attention worldwide as a consequence of being the most disastrous infectious disease in the past century. As one of the most immediately druggable targets of SARS-CoV-2, the main protease (Mpro) has been studied thoroughly. In this review, we provide a comprehensive summary of recent advances in structural studies of Mpro, which provide new knowledge about Mpro in terms of its biological function, structural characteristics, substrate specificity, and autocleavage process. We examine the remarkable strides made in targeting Mpro for drug discovery during the pandemic. We summarize insights into the current understanding of the structural features of Mpro and the discovery of existing Mpro-targeting drugs, illuminating pathways for the future development of anti-SARS-CoV-2 therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Antivirais/farmacologia , Antivirais/química , Descoberta de Drogas , Biologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Simulação de Acoplamento Molecular
16.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569696

RESUMO

Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.


Assuntos
Haemonchus , Nematoides , Parasitos , Animais , Masculino , Feminino , Haemonchus/genética , Haemonchus/química , Haemonchus/metabolismo , Interações Hospedeiro-Parasita/genética , Peptídeo Hidrolases/metabolismo , Proteômica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Endopeptidases/metabolismo , Informática
17.
Sci Rep ; 13(1): 11465, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454225

RESUMO

Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.


Assuntos
Infecções por Cestoides , Echinococcus granulosus , Neoplasias , Cães , Animais , Humanos , Echinococcus granulosus/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteases/metabolismo , Peptídeos/metabolismo , Canais de Potássio/metabolismo
18.
J Med Chem ; 66(15): 10658-10680, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505188

RESUMO

The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.


Assuntos
Antimaláricos , Peptidomiméticos , Camundongos , Animais , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Ácido Aspártico Endopeptidases , Plasmodium falciparum/metabolismo , Proteínas de Protozoários
19.
PET Clin ; 18(3): 337-344, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030982

RESUMO

Like other major cancers, gastric cancer expresses fibroblast activation protein (FAP) in cancer-associated fibroblasts. Many recent studies have reported the utility and superiority of FAP inhibitor (FAPI)-PET over [18F]fluorodeoxyglucose (FDG)-PET in gastric cancers, from initial staging to recurrence detection. FAPI-PET shows higher accumulation in primary sites and metastatic lesions than does FDG-PET, especially for the detection of peritoneal carcinomatosis. In the case of gastric signet ring cell carcinoma, FAPI-PET showed excellent performance, as uptake is usually weak on FDG-PET in this cohort.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/tendências , Neoplasias Peritoneais/diagnóstico por imagem , Inibidores de Proteases/metabolismo , Fluordesoxiglucose F18/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/normas
20.
PET Clin ; 18(3): 369-380, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37117122

RESUMO

Computed tomography (CT), MR imaging, and PET with fluorodeoxyglucose F18/CT are commonly used for radiation therapy planning; however, issues including precise nodal staging on CT or false positive results on PET/CT limit their usability. Clinical trials using fibroblast activation protein ligands for additional imaging have provided promising results regarding staging and target volume delineation-particularly suitable for sarcoma, some gastrointestinal tumors, head and neck tumors, and lung and pancreatic cancer. Although further prospective trials are necessary to identify clinical settings for its application in radiation oncology, fibroblast activation protein inhibitor PET/CT indisputably represents an excellent opportunity for assisting radiotherapy planning.


Assuntos
Neoplasias , Inibidores de Proteases , Radioterapia , Radioterapia/métodos , Radioterapia/normas , Radioterapia/tendências , Inibidores de Proteases/metabolismo , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...